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ABSTRACT 

 

This paper examines the limitations of using B-spline representation as an analysis tool by 

comparing its geometry with the nonlinear finite element absolute nodal coordinate formulation 

(ANCF) geometry. It is shown that while both B-spline and ANCF geometries can be used to 

model non-structural discontinuities using linear connectivity conditions, there are fundamental 

differences between B-spline and ANCF geometries. First, while B-spline geometry can always 

be converted to ANCF geometry, the converse is not true; that is, ANCF geometry cannot always 

be converted to B-spline geometry. Second, because of the rigid structure of the B-spline 

recurrence formula, there are restrictions on the order of the parameters and basis functions used 

in the polynomial interpolation; this in turn can lead to models that have significantly larger 

number of degrees of freedom as compared to those obtained using ANCF geometry. Third, in 

addition to the known fact that B-spline does not allow for straight forward modeling of T-

junctions, B-spline representation cannot be used in a straight forward manner to model 

structural discontinuities. It is shown in this investigation that ANCF geometric description can 

be used to develop new spatial chain models governed by linear connectivity conditions which 

can be applied at a preprocessing stage allowing for an efficient elimination of the dependent 

variables. The modes of the deformations at the definition points of the joints that allow for rigid 

body rotations between ANCF finite elements are discussed. The use of the linear connectivity 

conditions with ANCF spatial finite elements leads to a constant inertia matrix and zero Coriolis 

and centrifugal forces. The fully parameterized structural ANCF finite elements used in this 

study allow for the deformation of the cross section and capture the coupling between this 

deformation and the stretch and bending. A new chain model that employs different degrees of 

continuity for different coordinates at the joint definition points is developed in this 

investigation. In the case of cubic polynomial approximation, 1C  continuity conditions are used 

for the coordinate line along the joint axis; while 0C  continuity conditions are used for the other 

coordinate lines. This allows for having arbitrary large rigid body rotation about the axis of the 

joint that connects two flexible links. Numerical examples are presented in order to demonstrate 

the use of the formulations developed in this paper. 

 

Keywords: Geometric discontinuities; Finite element; Multibody systems; B-spline; NURBS.  
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1. INTRODUCTION 

The geometry description used in many of the existing finite element (FE) formulations cannot 

be exactly converted to the geometry developed by computational geometry methods such as B-

spline and NURBS (Non-Uniform Rational B-Splines) representations. This fact has motivated 

researchers in the mechanics community to adopt the methods of computational geometry as 

analysis tools instead of using conventional FE formulations. While the methods of 

computational geometry, such as B-spline, have several desirable analysis features; these 

methods have serious limitations when used as analysis tools. The B-spline recurrence formula 

and the rigid definition of the knot vector make B-spline less attractive as compared to the 

absolute nodal coordinate formulation (ANCF) geometry description. While B-spline geometry 

can always be converted exactly to ANCF geometry (Piegl and Tiller, 1997, Sanborn and 

Shabana, 2009; Lan and Shabana, 2010), the converse is not always true. ANCF geometry does 

not restrict the order of the parameters or the number of basis functions used in the interpolating 

polynomials (Dmitrochenko.and Pogorelov, 2003; Dufva et al., 2005; Garcia-Vallejo et al., 

2008; Kerkkänen et al., 2006; Schwab and Meijaard, 2010; Tian et al., 2009, 2010; Yoo et al., 

2004; Yakoub and Shabana, 2001; Shabana and Mikkola, 2003; Abbas et al., 2010). This 

advantage, as will be demonstrated in this paper, allows for developing finite elements with less 

number of degrees of freedom as compared to those developed using the B-spline geometry. 

Another fundamental difference between B-spline and ANCF geometric descriptions lies in 

modeling discontinuities. As previously explained by the authors using simple planar examples, 

there are two types of discontinuities when chain systems are considered (Hamed et al., 2011). 

The first is structural discontinuity which does not allow rigid body displacement between two 

elements connected at the joint definition point. This joint allows only for deformation degrees 

of freedom. The second type of discontinuity is called non-structural discontinuity which allows 
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for rigid body displacement at the joint definition point. Figure 1 shows a chain which has a 

structural discontinuity at point C  and non-structural discontinuity at point O . At the junction at 

C , only deformation degrees of freedom are allowed, while at point O , relative rigid body 

rotation is permitted. Nonetheless, the degree of continuity at both points is 0C . B-spline can be 

used as an analysis tool to describe the non-structural 0C  discontinuity at point O , but because 

of its rigid recurrence structure and the definition of its knot vector and knot multiplicity, B-

spline cannot be used in the motion analysis of structural 0C  continuity at point C  since B-

spline 0C  description leads to a rigid body mode; that is, the elimination of one control point by 

reducing the knot multiplicity by one is not sufficient for eliminating the modes of rigid body 

rotations between two B-spline segments. ANCF geometry, on the other hand, can be used in the 

analysis of both structural and non-structural discontinuities (Hamed et al., 2011). 

One of the important multibody system (MBS) applications that can be used to shed light 

on the fundamental differences between B-spline and ANCF geometries are chain applications. 

Chains are highly nonlinear systems that are subjected to repeated impulsive forces during their 

functional use. Geometric nonlinearities are the result of the large relative displacements 

between the chain links. The repeated impulsive forces as the result of the chain link contact with 

the rollers and other system components introduce high frequencies to the nonlinear chain 

dynamic model. For these reasons, the nonlinear dynamic analysis of chain systems represents 

one of the most challenging computational problems. In fact the simplest rigid-link chains are 

highly nonlinear because of the large relative rotations between the chain links (Roberson and 

Schwertassek, 1988; Schiehlen, 1997). In the case of rigid-link chains, the geometric 

nonlinearities that result from these rotations lead to highly nonlinear chain inertia forces that 

include the quadratic velocity Coriolis and centrifugal forces. Furthermore, the contact between 
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the rigid-chain links and the sprockets and rollers that may exist in the system is often described 

using compliant force models; leading to high frequencies that require the use of very small time 

integration step in order to accurately capture the changes in the velocities, accelerations, and 

forces. For these reasons, efficient and accurate modeling of chain systems remains a challenging 

MBS computational problem even in the simpler case in which the chain links are assumed to be 

rigid. 

 Because of the geometric nonlinearities and the high frequencies, it is important to use an 

efficient solution algorithm if the flexibility of the chain links is considered. Flexible-link chains 

require the use of significantly larger number of degrees of freedom in order to capture the link 

deformation modes. Some of these deformation modes may also introduce high frequencies in 

addition to the high frequencies resulting from the contact between the chain links and rollers as 

well as other components in the system. It is also important in some applications to capture 

certain coupled deformation modes that cannot be captured using conventional structural finite 

elements such as beams and plates that are based on simplified kinematic assumptions. For 

example, in tracked vehicle applications, the chain links are subjected to significant tensile and 

compressive forces. The coupling between the deformation of the link cross section and other 

modes of deformation can be significant and must be taken into account in order to develop a 

more realistic model. It is, therefore, important to employ FE formulation that captures the effect 

of these coupled deformation modes and allows for an efficient MBS implementation. It was 

shown in the literature using planar examples that ANCF finite elements can be used to develop 

new FE meshes for chain applications (Garcia de Valljo et al, 2003; Hamed et al, 2011). In these 

FE meshes, the flexible-link pin joints are defined using linear connectivity conditions despite 

the large relative rotation allowed between the chain links. This leads to an efficient elimination 
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of the dependent variables at a preprocessing stage. Furthermore, the use of the linear 

connectivity conditions with ANCF finite elements leads to a constant chain inertia matrix and 

zero Coriolis and centrifugal forces. It is one of the main objectives of this investigation to 

demonstrate for the first time that a three-dimensional flexible-link chain model that is based on 

linear connectivity conditions and has a constant mass matrix and zero Coriolis and centrifugal 

forces can be developed using spatial fully parameterized ANCF finite elements.   

  This paper focuses on two fundamental issues that summarize its main contributions. 

First, the fundamental differences between B-spline and ANCF geometries are demonstrated. It 

is shown that while B-spline geometry can always be converted to ANCF geometry, the converse 

is not true because of the rigid B-spline recurrence structure. It is also shown that B-spline 

representation can be used only in the analysis of one type of 0C  continuity referred to in this 

paper as non-structural discontinuity; while such a B-spline representation cannot be used in the 

analysis of another type of 0C  continuity referred to as structural discontinuity. It is shown that 

ANCF finite elements which have degrees of freedom less than their B-spline counterparts can 

be developed since ANCF does not have specific requirements on the order of the 

parameterization variables or the number of basis functions used in the interpolating 

polynomials.  

The second main contribution of this paper is to develop a new three-dimensional 

flexible-link chain model using fully parameterized ANCF finite elements. This chain model is 

based on a new FE mesh defined using linear connectivity conditions. The FE mesh allows for 

relative rigid body rotations between its elements and has a constant inertia matrix and zero 

Coriolis and centrifugal forces. In order to develop the new flexible-link chain model presented 

in this paper, a new pin joint model is introduced. At the joint definition point, different degrees 
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of continuity are used with different parameters; leading to some strain components to be 

continuous while the others are discontinuous. The modes of deformation at the joint definition 

points are discussed in order to shed light on the nature of the new joint and kinematic 

constraints developed in this paper. Numerical results are presented in order to demonstrate the 

use of ANCF finite elements in developing the new flexible-link chain model. The limitations 

identified in this paper when B-spline geometry is used as analysis tool suggest the use of the 

integration of computer aided design and analysis (I-CAD-A) approach (Sanborn and Shabana, 

2009; Lan and Shabana, 2010). In the I-CAD-A approach, a constant transformation can be 

developed to convert CAD geometry to FE mesh.  

 

2. B-SPLINE SURFACES 

B-spline surfaces are defined using the product of B-spline base functions, two parameters, and 

two knot vectors. B-spline surfaces can be defined in the following parametric form (Piegl and 

Tiller, 1997): 

, , ,

0 0

( , ) ( ) ( )
n m

i p j q i j

i j

u v N u N v
 

r P     (1) 

where u  and v  are the parameters; )(, uN pi  and , ( )j qN v  are B-spline basis functions of degree 

p  and q , respectively; and ,i jP  are a set of bidirectional net of control points. The B-spline 

basis functions )(, uN pi  are defined as  
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  
 


  

  

  (2) 

where ,  0,1,2, , 1 iu i n p   are called the knots; and 
1i iu u  . The vector 

0 1 1{ }n pu u u  U  is called the knot vector. Similar definitions can be introduced for 

, ( )j qN v  with another knot vector 0 1 1{ }m qv v v  V . Note that the orders of the 

polynomials in the u  and v  directions can be different; for example, a cubic interpolation can be 

used along u  while a linear interpolation can be used along v . As in the case of B-spline curves, 

the knots of B-spline surfaces do not have to be distinct; distinct knots are called breakpoints and 

define surface segments with non-zero dimensions. The number of the non-distinct knots in U  

and V  at a point is referred to as the knot multiplicity associated, respectively, with the 

parameters u  and v  at this point. At a given breakpoint, the multiplicity associated with u  can 

be different from the multiplicity associated with v ; allowing for different degrees of continuity 

for the derivatives with respect to u  and v . For cubic ,i pN  ( 3p  ), 0 1,C C , or 2C  conditions 

correspond, respectively, to knot multiplicity of three, two, and one; while in the case of linear 

interpolation of ,j qN , the highest continuity degree that can be demanded is continuity of the 

gradients. When zero multiplicity is used at a breakpoint, the segments blend together at this 

point. 

 In B-spline surface representation, there is a relationship between the polynomial degree, 

the number of knots, and the number of control points. This relationship must be fully 

understood if B-spline geometry will be used as an analysis tool. If 1r   is the number of knots 

in U  and 1s   is the number of knots in V , then in B-spline geometry, one must have 
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1, 1r n p s m q           (3) 

These formulas imply that, for a given polynomial order, if the number of knots decreases, the 

number of control points (degrees of freedom used in the analysis) must also decrease. A 

decrease in the knot multiplicity by one is equivalent to eliminating one control point. This can 

also be equivalent to increasing the degree of continuity since eliminating a control point can be 

the result of imposing algebraic equations that relates the derivatives at a certain breakpoint. 

From the bidirectional structure used in Eq. 1, a surface segment which has cubic interpolation 

along u  ( 3, 3, 1 8p n r    ) and a linear interpolation along v ( 1, 1, 1 4q m s    ), should 

have    1 1 8n m     control points; this is regardless of whether the surface is two- or three-

dimensional. Manipulation of the B-spline surface of Eq. 1 shows that these eight control points 

are the result of using the alternate basis set 2 2 3 31, , , , , , ,u v uv u u v u u v . That is, B-spline 

representation and the formulas of Eq. 3 do not allow for the use of the basis set  2 31, , , , ,u v uv u u  

which can be effectively used to develop a shear deformable beam model. If a cubic interpolation 

is used for both u  and v  (thin plate), the B-spline representation will require 16 control points 

because the expansion must include all terms ; , 0,1,2,3k lu v k l   regardless of whether the shape 

of deformation of the plate is simple or complex; one must strictly follow the B-spline rigid 

structure. This can be of disadvantage in the analysis since such a geometric representation can 

unnecessarily increase the dimension of the analysis model and leads to the loss of the flexibility 

offered by the FE method or modal analysis techniques. As the degree of the polynomial 

interpolation increases, the problem gets even worse. Another important and interesting issue 

with regard to the use of B-spline as an analysis tool is capturing discontinuities; this is discussed 

in the following section. 
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3. STRUCTURAL AND NON-STRUCTURAL DISCONTINUITIES 

 As previously mentioned, in the case of structural discontinuity, there is no relative rigid body 

motion at the discontinuity node; all the relative displacements are due to deformations. Example 

of structural discontinuity is at point C  in Fig.1. At the structural discontinuity node, in the case 

of the planar system shown in Fig. 1, there is only one state of strains. Non-structural 

discontinuity, on the other hand, allows for relative rigid body rotation. At point O  of Fig. 1, 

there can be two different states of strains because of the rigid body mode. Nonetheless,  

structural and non-structural discontinuities can be classified as 0C . They are, however, 

fundamentally different from the analysis point of view since they lead to completely two 

different joint models that have different numbers of degrees of freedom. Interestingly, one of 

these types of discontinuities can be captured by B-spline recurrence formula, while the other 

cannot be captured. More interestingly, the discontinuity type captured by B-spline is the non-

structural discontinuity that characterizes many mechanical system applications. Modeling 

structural discontinuity that characterizes both mechanical and structural systems requires the use 

gradient transformation which is crucial in the ANCF geometric representation. 

 As previously mentioned, reducing the knot multiplicity by one at a breakpoint leads to 

0C  continuity and to the elimination of one control point. This equivalent to the MBS pin joint 

constraint definition in planar analysis and to the MBS spherical joint definition in the spatial 

analysis. This type of 0C  continuity that is captured by B-spline is of the non-structural 

discontinuity type which leads to a rigid body mode and to a non-unique state of the strain at the 

discontinuity node. The B-spline recurrence formula structure leads automatically to this type of 

discontinuity. The structural discontinuity, while it is also of the 0C  type, requires additional 

algebraic equations in order to define a unique strain state by eliminating the relative rotation at 
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the joint definition point. These algebraic equations can be used to eliminate other control points, 

and such elimination is not embedded in the rigid B-spline geometry representation. Only one 

type of 0C  continuity that can be achieved by using B-spline formula; reducing the knot 

multiplicity by one in B-spline representation does not capture structural discontinuity. 

 

4. GENERALITY OF ANCF GEOMETRY 

While B-spline geometry can always be converted to ANCF geometry, the converse is not true. 

ANCF geometry does not impose restriction on the basis functions that must be included in the 

interpolating polynomials. This allows for developing finite elements that have less coordinates 

as compared to those developed using the B-spline representation. Furthermore, ANCF geometry 

can be used to model both structural and non-structural discontinuities (Shabana and Mikkola, 

2003; Shabana, 2010; Hamed et al., 2011), while the rigid recurrence B-spline representation 

cannot be used to model structural discontinuities in a straight forward manner. The basic 

differences between ANCF and B-spline geometries are demonstrated in this section using a 

planar beam example. The displacement field of the shear deformable beam used in this section 

can be written as      , ,x y x y tr S e , where x  and y  are the element spatial coordinates, t  is 

time, S  is the element shape function matrix, and e  is the vector of the element nodal 

coordinates. The shape function matrix for the element considered in this section is defined as 

 1 2 3 4 5 6

j s s s s s sS I I I I I I      (4) 

where the shape functions , 1,2, ,6is i   are defined as (Omar and Shabana, 2001) 
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   

 

2 3 2 3

1 2 3

2 3 2 3

4 5 6

1 3 2 , 2 , 1 ,

3 2 , ,

s s l s l

s s l s l

      

    

        


      

  (5) 

In this equation, ,x l y l   . ANCF finite elements employ gradient vectors as nodal 

coordinates. For the element used in this section, the vector of nodal coordinates is defined as 

           
1 1 1 2 2 2

T
T T T T T T

x y x y         
 

e r r r r r r   (6) 

where   , 1,2
k

k   indicates variables evaluated at node k  of the element. Note that the element 

defined by the preceding equations is based on a cubic interpolation for x  and a linear 

interpolation for y . This element has been widely used in the analysis of large deformation 

problems. 

 The finite element described in this section is an example of ANCF elements that cannot 

be converted to B-spline representation. This element is based on a polynomial expansion that 

does not have the two basis functions 2x y  and 3x y . These terms can be systematically included 

in ANCF geometry by adding nodal coordinates allowing for converting B-spline representation 

to ANCF representation. Similar comments apply to ANCF thin plate elements that do not have 

to include all the basis functions ; , 0,1,2,3k lx y k l  . This flexibility offered by ANCF geometry 

allows for developing finite elements that have smaller number of coordinates compared to those 

elements developed by B-spline geometry. 

 One can also show that ANCF finite elements can describe structural and non-structural 

discontinuities. Non-structural discontinuities that allow for large rigid body rotations can be 

described using a 0C  model obtained by imposing constraints on the position coordinates only. 
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For example if two elements i  and j  are connected by pin joint at a node, one can apply the 

algebraic equations i jr r  at this node. These algebraic equations can be imposed at a 

preprocessing stage to eliminate the dependent variables and define FE mesh that has a constant 

mass matrix and zero Coriolis and centrifugal forces despite the finite rotations allowed between 

the finite elements of the mesh. As previously mentioned, non-structural discontinuities can also 

be described using B-spline geometry by reducing the knot multiplicity at the joint node by one. 

Note that in the case of non-structural discontinuities no constraints are imposed on the gradient 

vectors, and therefore, the state of strain is not unique at the joint node. Each of the Lagrangian 

strains    1 2, 1 2T T

xx x x yy y y    r r r r , and 2T

xy x y  r r  have two values at the joint node; 

one defined on element i  and the other is defined on element j . Here 

, ,x y zx y z        r r r r r r . 

 The concept of degrees of freedom widely used in mechanics is not considered in 

developing the recurrence relationships on which B-spline and NURBS geometry are based. This 

represents another serious limitation when these computational geometry methods are used as 

analysis tools; as evident by the fact that B-spline geometry cannot describe structural 

discontinuities. This type of discontinuities, while it remains of the 0C  continuity type, requires 

imposing additional constraints on the gradients; these constraints cannot be captured by the B-

spline recurrence formula since they require the elimination of additional vectors. In the case of 

B-spline, 0C  continuity is achieved by reducing the knot multiplicity by one, and this eliminates 

one control point leading to the definition of a pin joint (non-structural discontinuity). ANCF 

geometry, on the other hand, allows for imposing constraints on the gradients using the tensor 

transformation    1 2    r x r x A , where  1 1 1

T
x yx  and  2 2 2

T
x yx  are two sets of 
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coordinate lines, and A  is the matrix of coordinate line transformation. Using this tensor 

gradient transformation, the structural discontinuities can be systematically modeled using 

ANCF finite elements (Shabana and Mikkola, 2003; Shabana, 2010).  For example, if the axis of 

a beam element j  makes an angle   with the axis of another element i  and the two elements 

are rigidly connected at a node, the structural discontinuity conditions that eliminate all the 

relative rigid body displacements can be written at the joint node as 

     
cos sin

,
sin cos

i i j j
i j

i i j jx y x y

 

 

        
      

        

r r r r
r r   (7) 

These six scalar algebraic equations can be used to eliminate a position coordinate vector and 

two gradient vectors, defining a unique strain state at the node of connectivity between the 

ANCF finite elements. The algebraic conditions of Eq. 7 that allow ANCF finite elements to 

describe two types of 0C  discontinuity cannot be automatically captured by the B-spline 

recurrence formula. Note that these algebraic conditions are linear in the ANCF finite element 

coordinates, and therefore, they can be applied using a standard FE assembly procedure at a 

preprocessing stage of the analysis. These conditions lead to a relative motion, between the finite 

elements, that is pure deformation displacement. 

 It is important to point out that the coordinate line transformation of Eq. 7 need to be 

applied only in the case of structural discontinuities. Such a transformation is not required in the 

case of non-structural discontinuities despite the fact that the elements can have arbitrary 

orientation relative to each others. This is due to facts that non-structural discontinuity does not 

impose constraints on the gradient vectors, ANCF geometry is invariant under an arbitrary rigid 

body displacement, and each ANCF finite element has its own independent parameters. 
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Similarly, in the case of curved shapes as in belt applications, the coordinate transformation used 

in Eq.7 is not required since there are no structural discontinuities and the gradients at all points 

on the belt can be defined with respect to the same coordinate lines. In the curved sections of the 

belt, one must provide the appropriate values of the gradient vectors that define the correct 

shape. Recall that a curve, regardless of its shape, requires only one parameter; while a surface, 

regardless of its shape, requires only two parameters.  

 

5. THREE-DIMENSIONAL NON-STRUCTURAL DISCONTINUITIES 

In this section, it is shown how fully parameterized ANCF three-dimensional finite elements can 

be used to develop spatial joint models that allow large relative rigid body rotation between the 

finite elements. ANCF finite elements connected by this joint can be assembled using linear 

connectivity conditions leading to FE mesh that has a constant mass matrix and zero Coriolis and 

centrifugal forces. The fully parameterized three-dimensional ANCF beam element is used in 

this investigation to demonstrate the development of such joint models. The displacement field 

of the element can be written as      , , , ,x y z x y z tr S e  where ,x y , and z  are the element 

spatial coordinates. The shape function matrix of this element is defined as (Yakoub and 

Shabana, 2001; Shabana, 2008) 

  1 2 3 4 5 6 7 8s s s s s s s sS I I I I I I I I    (8) 

where the shape functions , 1,2, ,8is i   are defined as 

 

   

 

2 3 2 3

1 2

2 3

3 4 5

2 3

6 7 8

1 3 2 , 2 ,

, , 3 2 ,

, ,

s s l

s l s l s

s l s l s l

    

     

   

     


      


     

   (9) 
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In this equation, , ,x l y l z l     . The element has two nodes; each node has 12 nodal 

coordinates defined by the vector 
T

k kT kT kT kT

x y z
   e r r r r , where k  is the node number. 

The ANCF finite element defined by Eqs. 8 and 9 captures the cross section deformation and its 

coupling with extension and bending. Therefore, this element can be used to develop general 

models for belt drives and rubber tracked vehicles. 

 The three-dimensional beam element presented in this section is another example that can 

be used to demonstrate the generality of the ANCF geometry. This element is based on cubic 

interpolation in x  and linear interpolation in y  and z . Nonetheless, one can show that the four 

basis functions 2 3 2 3, , ,x y x y x z x z  are not used in developing the displacement field of this 

widely used ANCF beam element. Therefore, the geometry of this element cannot be converted 

to B-spline volume geometry. These missing basis functions can be systematically included in 

the development of another ANCF finite element that can be converted to B-spline volume 

geometry. However, such an element will lead to 50% increase in the number of the element 

nodal coordinates.  

 A planar pin joint between rigid or flexible bodies is an example of 0C  continuity, as 

previously discussed. A pin joint between two rigid bodies in the spatial analysis also allows for 

only one degree of freedom, which is a relative rotation about the joint axis. Since the pin joint 

eliminates five degrees of freedom in the rigid body analysis, its formulation requires five 

algebraic constraint equations that eliminate three relative translation displacements and two 

relative rotations between the two bodies. In the case of flexible bodies, an infinitesimal volume 

can have 12 modes of displacements; three rigid body translations, three rotations, and six 

deformation modes. In this section, a new model of pin joint between ANCF finite elements is 
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introduced. The formulation of this pin joint between elements i  and j  employs the following 

six scalar equations defined at the joint node: 

,i j i j

  r r r r      (10) 

Here   is the coordinate line that defines the joint axis;   can be ,x y , or z  or any other 

coordinate line as discussed later in this section. The six scalar equations of Eq. 10 eliminate six 

degrees of freedom; three translations, two rotations, and one deformation mode. This joint 

model ensures 1C  continuity with respect to the coordinate line   and 0C  continuity with 

respect to the other two parameters. It follows that the Lagrangian strain component 

 1 2T

    r r  is continuous at the joint definition point, while the other five strain 

components can be discontinuous. 

 While the algebraic constraint equations of a pin joint between two rigid bodies are 

highly nonlinear. The algebraic constraint equations of Eq. 10 are linear. Therefore, these 

equations can be applied at a preprocessing stage to systematically eliminate the dependent 

variables. Using these equations, one can develop a new kinematically linear FE mesh for 

flexible-link chains in which the links can have arbitrarily large relative rotations. The use of this 

pin joint model with ANCF finite elements leads to a constant mass matrix and zero Coriolis and 

centrifugal forces. 

 As previously mentioned in this paper, B-spline geometry can describe the type of non-

structural discontinuity discussed in this section. Nonetheless, if an arbitrary axis of a pin joint is 

to be used in the analysis, the use of B-spline geometry can be difficult given the rigid structure 

of the B-spline recurrence formula. In order to be able to choose an arbitrary axis of rotation for 
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the pin joint, one must be able to define the gradient vector in the direction of a coordinate line 

along this axis of rotation. Such a definition can be easily made using ANCF geometry using the 

gradient tensor transformation. Let ,u v , and w  be another set of parameters; one of them can be 

used to define the joint axis. It follows that  u v w x y z
   r r r r r r A , where A  is the 

constant matrix of coordinate transformation defined as 

x x x

u v w

y y y

u v w

z z z

u v w

   
   
 
   
   
 
   
    

A      (11) 

The fact that this matrix is constant allows having linear pin joint connectivity conditions when 

ANCF finite elements are used (Shabana and Mikkola, 2003; Shabana, 2010).  

 

6. NUMERICAL EXAMPLES 

In this section, three-dimensional belt drive and chain examples are used to demonstrate the 

implementation of the concepts discussed in this paper. The degree of continuity at the element 

interfaces can be applied at a preprocessing stage in order to eliminate the dependent variables 

leading to a finite element mesh that has a constant mass matrix and zero Coriolis and centrifugal 

forces. The fully parameterized three-dimensional ANCF beam element discussed in this paper is 

used in modeling the belt and the chain used in this section. The following three different models 

are considered in this section:  

1. A finite element belt model with 1C  continuity. The geometry of this model can be 

defined in the initial configuration using a smooth curve that defines the centerline of the 
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belt. This model, referred to in this section as the 1C  belt model, leads to continuous 

gradients and strains at the element interfaces. 

2. A finite element belt model that ensures continuity of yr  ( 1C  continuity along y ), but it 

has 0C  continuity along x  and z . In the initial configuration, the centerline of the belt is 

continuous. This model is referred to as the 0 1C C  belt model. 

3. A finite element flexible-link chain model that ensures continuity of yr  ( 1C  continuity 

along y ), but it has 0C  continuity along x  and z . This model differs from the previous 

two models due to the fact that the chain centerline is not continuous at the initial 

configuration because xr  and zr  are not continuous. This model will be referred to in this 

section as the chain model.  

The belt and chain drive mechanisms considered in this section are assumed to consist of two 

pulleys and a flexible belt or a chain as shown in Figs. 2 and 3. Figure 3 shows the discontinuity 

of the gradients at the joints in the initial configuration. The pulleys are connected to the ground 

using revolute joints. The span length in the reference configuration is assumed to be 0.12 m in 

the case of the belt model and 0.128 m in the case of the chain model. In the examples 

considered in this section, the angular velocity of the driving pulley is specified by the following 

equation:  

1

0                       0.3

( 0.3)
100     0.3 1.0

0.7

100                   1.0

t

t
t

t







  




                             (12) 

where 1  is expressed in rad/s,  and t is the time expressed in seconds. The mass moment of 

inertia of the driven pulley about its axis of rotation is 0.0075 kg/m
2
. In order to introduce 



UNCLAS: Dist A. Approved for public release 

20 
 

tension in the system, the driving pulley is displaced in the X  direction until the span length 

reaches 0.18 m for the three models. In order to avoid oscillations at the beginning of the 

simulation, this pulley displacement is achieved over a period of 0.2 s. A resistance moment 

defined by the following equation is also applied to the driven pulley: 

0                        0.3

( 0.3)
1.1     0.3 1.0

0.7

1.1                   1.0

t

t
M t

t





   

 

   (13) 

The two pulleys are assumed to have the same radius and width of 0.058 and 0.01 m, 

respectively. A compliant force model is used to describe the belt/pulley interaction. The 

stiffness and damping coefficients used in the belt/pulley contact force model are given 

respectively by 
7

109  N/m
3 and 32 10  N.s/m

3
. Tangential friction forces are also introduced 

using a coefficient of dry friction of 1.2 (Leamy and Wasfy, 2002). The friction parameter that 

defines the slope in the transition region is assumed to be 10
6
 N.s/m

3
 (Dufva et al, 2007). The 

belt is modeled using 20 ANCF three-dimensional beam elements.  Incompressible Neo-

Hookean constitutive model with nonlinear damping model is used to model the flexible belt. 

The belt is assumed to have a rectangular cross-section of dimensions 0.01 0.004 m and density 

of 3500 kg/m
3
. The incompressible Neo-Hookean model constant is assumed to be 

26
N/m102s , the incompressibility constant is assumed to be 

28
N/m10k , and the 

dilatation and deviatoric dissipation factors used for the damping model are assumed to be 
4

10


 

and 
5

105


 , respectively. 

 Figure 4 shows the angular velocity of the driving and driven pulleys for both the 1C , 

0 1C C , and chain models. The results presented in this figure show that the angular velocity of 
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the driven pulley in the case of the 1C  belt model is higher than that of 0 1C C  belt and chain 

models. This can be attributed to the fact that in the case of the 0 1C C  and chain models, some 

of the loads such as bending moment about Y  axis are not transferred between elements. Figures 

5-7 show the configurations of the belt centerline for the three models at time 1 s. These figures 

show that the gradients xr and zr  are discontinuous in case of the 0 1C C  belt and chain models 

and they are continuous in case of the 1C  belt model.  

 Figure 8 shows a measure of the cross section deformation along the belt centerline at 

time 1.9s.  This measure is defined by Nanson’s formula that can be used to calculate the ratio 

between the areas in the current and reference configurations. Nanson’s formula is defined as 

(Ogden, 1984; Shabana, 2008) 

 n

TT

n

J

dA

da

nJJn
                                                        (14)   

where a  and A  are, respectively. The area in the current and the reference configurations, J is 

the determinant of the matrix of position vector gradients J , and nn is the unit vector normal to 

the area. The results of Fig. 8 show that the area ratio is continuous in the case of the 1C  belt 

model while it is not continuous in case of the 0 1C C and chain models.  Figures 9-11 show 

comparison of the normal strains at the element interface points along the belt centerline for the 

three models. The results obtained in this investigation show that all the strain components, 

which are functions of the gradient vectors, are continuous in the case of the 1C  belt model; 

while in the case of the 0 1C C  and chain models only yy  is continuous. Figure 12 shows the 

Lagrangian shear strain component xz  along the belt centerline. The results of this figure show 
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xz  to be discontinuous in the case of the 0 1C C  and chain models because it is function of both 

the gradient vectors  xr  and zr , which are discontinuous when these models are used.  

 

7.   SUMMARY AND CONCLUSIONS 

This paper addresses the important issue of using computational geometry methods such as B-

spline and NURBS as analysis tools. B-spline and NURBS employ recurrence formulas that 

allow changing the degree of continuity at a breakpoint by adjusting the knot multiplicity at this 

point. As demonstrated in this paper, the recurrence formula has several drawbacks when B-

spline representation is used as an analysis tool. Because the recurrence formula does not provide 

flexibility for choosing the basis functions, B-spline representation can lead to significantly 

larger number of coordinates and a higher dimensional model. This fact was used to demonstrate 

the generality of the ANCF geometry. While B-spline geometry can always be converted to 

ANCF geometry, the converse is not true. It is also shown that the B-spline recurrence formula 

cannot be used to model structural discontinuity in a straight forward manner. While structural 

discontinuities are of the 0C  type, they cannot be captured in the B-spline representation by 

reducing the knot multiplicity by one. This reduction of the knot multiplicity is equivalent to 

elimination of the relative translation only; and such a reduction in the knot multiplicity leads to 

a rigid body mode that defines the conditions of a pin joint. In the case of structural 

discontinuities, on the other hand, the 0C  B-spline representation does not eliminate the rigid 

body mode since additional algebraic constraint equations are required in order to eliminate the 

relative rotations between two segments. The paper also presents a new three-dimensional pin 

joint model that leads to linear connectivity conditions and constant mass matrix when used with 

ANCF finite elements. The implementation of this new model is demonstrated using a flexible-
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link chain example. The limitations identified in this paper when B-spline geometry is used as 

analysis tool suggest the use of the I-CAD-A approach in which a constant transformation can be 

developed to convert CAD geometry to FE mesh. It should be also clear that NURBS geometry 

has the same limitations as B-spline representation when used as an analysis tool. 
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Figure 1  Structural and non-structural discontinuities 

 

 

 

 

 

 

 

Figure 2 Initial configuration of the belt drive mechanism for both 0 1C C and 1C  models 
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Figure 3 Initial configuration of the chain model 
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Figure 4 Angular velocity of the driving and driven pulleys 

( Driving pulley,  1C  belt (driven pulley),  0 1C C  belt (driven pulley),           

chain (driven pulley)) 
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Figure 5 Centerline of the 1C  belt model at time 1s 
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Figure 6 Centerline of the 0 1C C  belt model at time 1s 
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Figure 7 Centerline of the chain model at time 1s 
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Figure 8  Area ratio along the belt centerline at time 1.9s 

(   1C  belt, 0 1C C  belt,        chain) 
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Figure 9 Axial strain xx  along the belt centerline at time 1.9s 

(   1C  belt, 0 1C C  belt,        chain) 
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Figure 10  Normal strain yy  along the belt centerline at time 1.9s 

(   1C  belt, 0 1C C  belt,        chain) 
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Figure 11 Normal strain zz  along the belt centerline at time 1.9s 

(   1C  belt, 0 1C C  belt,        chain) 
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Figure 12  Shear strain xz  along the belt centerline at time 1.9s 

(   1C  belt, 0 1C C  belt,        chain) 


